Sławomir Andrzej TORBUS¹, Maciej FAJFER¹, Małgorzata Jadwiga RATUSZEK¹

Uniwersytet Technologiczno – Przyrodniczy, Wydział Telekomunikacji, Informatyki i Elektrotechniki (1)

Projektowanie jednomodowych światłowodów telekomunikacyjnych odpornych na zginanie G.657 dla celów metrologicznych

Streszczenie. W pracy krótko scharakteryzowano odporne na zginanie jednomodowe światłowody telekomunikacyjne typu G.657. Zaprezentowano technikę wyznaczania wartości współczynników równania Sellmeiera, przy domieszkowaniu płaszcza fluorem oraz przy domieszkowaniu rdzenia germanem. Na podstawie tego równania można wyznaczyć wartości współczynników załamania w rdzeniu i płaszczu światłowodu. Pozwala to uzyskać właściwości, które powodują, że światłowód staje się odporny na zginanie i może być stosowany w metrologii. Sformułowano ogólne wnioski dotyczące stosowania jednomodowych światłowodów telekomunikacyjnych odpornych na zginanie G.657 w metrologii. Wskazano zalety tego rozwiązania w porównaniu do jednomodowych światłowodów telekomunikacyjnych G.652, G.653 i G.655.

Abstract. This article briefly characterize a bending loss insensitive single mode telecommunication fibers G.657. Presented a technique of determining the coefficients of Sellmeier equation, when the cladding is doped with fluorine, and the core is doped with germanium. By this equation can be determine the value of the refractive index in the core and cladding of optical fiber. This allows you to get the properties, which makes the bending loss insensitive single mode telecommunication fibers and it can be used in metrology. Have been formulated the general conclusions for use the bending loss insensitive single mode telecommunication fibers G.657 in metrology. Pointed out the advantages of this solution compared to the standard single mode telecommunication fibers G.652, G.653 and G.655. (Design of bending loss insensitive single mode telecommunication fibers G.657 for the purposes of measuring)

Słowa kluczowe: jednomodowy światłowód telekomunikacyjny, równanie Sellmeiera, interpolacja wielomianowa Lagrange'a **Keywords**: single mode telecommunication fiber, Sellmeier equation, Lagrange polynomial interpolation

Wstęp

W pracach [1,2,3] wykazano, że standardowe włókna telekomunikacyjne G.652 [4], G.653 [5] i G.655 [6] mogą być stosowane w czujnikach polarymetrycznych wykorzystujących magnetooptyczny efekt Faradaya do bezdotykowego pomiaru prądu. Zasadę działania takiego czujnika przedstawiono na Rys. 1.

Rys. 1. Zasada działania polarymetrycznego czujnika natężenia prądu

W typowym układzie pomiarowym czujnika, światłowód jest owinięty N razy wokół przewodu z prądem o natężeniu I. W pracy [2] pominięto jednak problem strat (tłumienia), które występują we włóknach poddanych gięciu. Natomiast w pracach [1,3] wykazano, że promień gięcia światłowodów G.652, G.653 i G.655 – *R* powinien być większy od 55 mm, aby uniknać strat makrozgięciowych (ang. macrobending). Owe straty mogą osiągać nawet wartość kilkudziesięciu decybeli. Zatem, aby uniknąć wzrostu tłumienia, klasyczne włókna jednomodowe G.652 [4], G.653 [5] i G.655 [6] wymagają zachowania minimalnego promienia gięcia większego od 55 mm, gdyż prowadzenie światła we włóknie jest prowadzeniem słabym, zapewnionym przez niewielką różnicę współczynników załamania rdzenia i płaszcza: ok. 0,3% [4,5,6]. W polarymetrycznych czujnikach natężenia prądu promień gięcia włókna może być jednak mniejszy od wymienionego wyżej.

W pracy [7] określono możliwość zastosowania odpornych na zginanie światłowodów telekomunikacyjnych G.657 [8,9] w polarymetrycznych czujnikach natężenia prądu wykorzystujących efekt Faradaya oraz zaprezentowano metodę projektowania rdzenia tychże światłowodów, który jest domieszkowany germanem (GeO₂), w celu zwiększenia wartości jego współczynnika załamania, w stosunku do współczynnika załamania w płaszczu.

Jednakże odporność na zginanie światłowodów G.657 [8,9] uzyskuje się poprzez specjalną konstrukcję płaszcza. Wobec tego celem pracy było opracowanie metody domieszkowania płaszcza fluorem, aby uzyskać żądaną odporność na zginanie światłowodów tego typu.

Charakterystyka światłowodów G.657

Zmniejszanie strat makrozgięciowych w jednomodowych światłowodach telekomunikacyjnych, w porównaniu do światłowodów G.652 [4], G.653 [5] i G.655 [6] uzyskuje się w kilku wariantach – Rys. 2.

Parametry włókien przedstawionych na Rys. 2. a) opisano w zaleceniu G.657A [8,9]. Światłowody b) i c) -Rys. 2. są włóknami o zwykłej litej budowie. W obszarach depresyjnych są one silnie domieszkowane fluorem [10]. Włókno z depresyjnym nanopierścieniem, przedstawione na Rys. 2. d), jest najnowszym światłowodem dedykowanym do pracy w układach z małymi promieniami gięcia. Makrozgięciowe parametry światłowodów b), c) i d) - Rys. 2. opisano w zaleceniu G.657B [8,9].

zmniejszenie promienia rdzenia – zmniejszenie pola modu, b) depresyjny płaszcz, c) płaszcz z depresyjnym pierścieniem wokół rdzenia, d) płaszcz z depresyjnym nanopierścieniem wokół rdzenia [7] Należy podkreślić, że jednomodowe światłowody telekomunikacyjne odporne na zginanie nie są obecnie powszechnie stosowane, a na ich temat ukazało się mało opracowań. Wybrane dane dotyczące konkretnych modeli, które są konieczne przy ich projektowaniu zostały zaczerpnięte z zaleceń [8,9] i zawarte w Tabeli 1.

Tabela 1. Przyjęte parametry jednomodowych światłowodów odpornych na zginanie potrzebne do sprawdzenia zaproponowanej w pracy metody [8,9]

Rodzaj światłowodu G.657	Wartość współczynnika załamania		
	n 1	n 2	n 3
G.657A (GeO ₂ -SiO ₂ oraz SiO ₂)	1,450	1,444	-
G.657B (GeO ₂ -SiO ₂ oraz F-SiO ₂ i SiO ₂)	1,449	1,440	1,444
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i F-SiO ₂)	1,449	1,444	1,440
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i nanopierścień)	1,449	1,444	1,436

Obliczenia parametrów włókien G.657 niezbędnych podczas ich projektowania dla celów metrologicznych

Falowód włóknisty o przekroju kołowym, którego model wykorzystywany do matematycznej analizy transmisji fali świetlnej, jest złożony z dwóch współcentrycznych warstw krzemionki – SiO2, które charakteryzują się różnymi współczynnikami załamania. Wewnętrzna, centralnie położona warstwa szkła zwana jest rdzeniem i pokryta jest ściśle przylegającą warstwą szkła zwaną płaszczem. Rdzeń charakteryzuje się wyższym współczynnikiem załamania n_1 niż warstwa otaczająca – płaszcz o współczynniku załamania – n_2 , aby na zasadzie całkowitego wewnętrznego odbicia można realizować w nim transmisję. Światłowody włókniste jednomodowe mają znormalizowane średnice rdzenia i płaszcza. W zależności od klasy światłowodu wynoszą one odpowiednio: 5 ÷ 11 µm/125 µm. W światłowodzie G.652 [4] średnica rdzenia wynosi 8 ÷ 9 µm, natomiast w światłowodach G.653 [5] i G.655 [6] średnica rdzenia wynosi 5 ÷ 7 µm. Jedną z metod załamania uzvskiwania większego współczynnika w rdzeniu światłowodu jest domieszkowanie go GeO2, ponieważ procent stężenia molowego domieszki powoduje zwiększenie współczynnika załamania w stosunku do współczynnika załamania czystego szkła.

Jeżeli rozpatrzymy konstrukcję jednomodowych światłowodów telekomunikacyjnych odpornych na zginanie G.657 [8,9] – Rys. 2, to zaobserwujemy, że poza domieszkowaniem rdzenia GeO₂, mamy również do czynienia z domieszkowaniem obszarów płaszcza fluorem.

W celu wyznaczenia współczynnika załamania w rdzeniu oraz w płaszczu światłowodu należy skorzystać z równania Sellmeiera:

(1)
$$n^{2} = 1 + \frac{a_{1} \cdot \lambda^{2}}{\lambda^{2} - b_{1}^{2}} + \frac{a_{2} \cdot \lambda^{2}}{\lambda^{2} - b_{2}^{2}} + \frac{a_{3} \cdot \lambda^{2}}{\lambda^{2} - b_{3}^{2}}$$

gdzie: a_i – stała, b_i – stałe [µm], λ – długość fali [µm].

W pracy [7] określono wielomiany interpolacyjne Lagrange'a czwartego stopnia współczynników a_i oraz b_i równania (1) przy domieszkowaniu rdzenia GeO₂. Mają one postać:

(2)
$$a_1(x) = -2,5937 \cdot 10^{-6} \cdot x^4 + 4,3202 \cdot 10^{-5} \cdot x^3 - -2,1252 \cdot 10^{-4} \cdot x^2 + 2,4787 \cdot 10^{-3} \cdot x + 6,9617 \cdot 10^{-6} - 2,2256 \cdot 10^{-6} \cdot x^4 - 2,8010 \cdot 10^{-5} \cdot x^3 + -2,1252 \cdot 10^{-6} \cdot x^4 - 2,2010 \cdot 10^{-5} \cdot x^3 + -2,1252 \cdot 10^{-6} \cdot x^4 - 2,1252 \cdot 1$$

(3)

(4)

$$a_{2}(x) = 2,2256 \cdot 10^{-1} \cdot x^{-5},8010 \cdot 10^{-1} \cdot x^{+} + 2,1635 \cdot 10^{-4} \cdot x^{2} + 1,17857 \cdot 10^{-3} \cdot x + 4,0794 \cdot 10^{-1}$$

$$u_{3}(x) = -5,0714 \cdot 10^{-3} \cdot x + 6,0325 \cdot 10^{-3} \cdot x + 8,9750 \cdot 10^{-1}$$
$$-3,7226 \cdot 10^{-3} \cdot x^{2} + 6,2935 \cdot 10^{-3} \cdot x + 8,9750 \cdot 10^{-1}$$

$$b_1(x) = -2,5755 \cdot 10^{-5} \cdot x^4 + 6,8545 \cdot 10^{-4} \cdot x^3 -$$

(5)
$$-5,5243 \cdot 10^{-3} \cdot x^2 + 1,2714 \cdot 10^{-2} \cdot x + 6,8404 \cdot 10^{-2}$$

(6)
$$b_2(x) = -1,8864 \cdot 10^{-5} \cdot x^4 - 5,0896 \cdot 10^{-4} \cdot x^3 +$$

$$+4,1937 \cdot 10^{-3} \cdot x^{2} - 9,2950 \cdot 10^{-3} \cdot x + 1,1624 \cdot 10^{-1}$$

$$b_{x}(x) = -7,7743 \cdot 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-3} \cdot x^{3} - 10^{-5} \cdot x^{4} + 1,3060 \cdot 10^{-5} \cdot x^{3} - 10^{-5} \cdot x^{5} + 10^{-5} \cdot$$

(7)
$$-6,8636 \cdot 10^{-3} \cdot x^{2} + 1,1042 \cdot 10^{-2} \cdot x + 9,8962$$

gdzie: *x* – stężenie molowe domieszki GeO₂ w rdzeniu światłowodu [M%].

W celu określenia domieszkowania depresyjnego pierścienia, wokół rdzenia światłowodu G.657, fluorem (F-SiO₂) należało dysponować danymi tabelarycznymi zamieszczonymi w pracy [11] – Tabela 2.

Tabela 2. Współczynniki a_i oraz b_i występujące we wzorze (1) dla czystej krzemionki SiO₂ oraz wybranych stężeń molowych fluoru w płaszczu światłowodu [11]

Współczynniki	Stężenie molowe domieszki fluoru w płaszczu światłowodu			
Sellmeiera	0 M% czyste SiO ₂	1 M%	2 M%	
a 1	0,6961663	0,69325	0,67744	
a ₂	0,4079426	0,39720	0,40101	
a 3	0,8974994	0,86008	0,87193	
<i>b</i> ₁	0,0684043	0,06724	0,06135	
<i>b</i> ₂	0,1162414	0,11714	0,12030	
<i>b</i> ₃	9,8961610	9,77610	9,85630	

Następnie określono wartości współczynnika załamania n_3 dla II i III okna optycznego, w zależności od stężenia molowego F-SiO₂, a na ich podstawie wyznaczono wielomiany interpolacyjne Lagrange'a [12] drugiego stopnia określające współczynnik załamania depresyjnego pierścienia domieszkowanego fluorem – n_3 , w zależności od stężenia molowego domieszki rdzeniowej GeO₂:

dla tzw. Il okna transmisyjnego (1,31 µm):

(8)
$$n_3(x) = 235,6417 \cdot 10^{-6} \cdot x^2 - 4,9036 \cdot 10^{-3} \cdot x + 1,4468$$

gdzie: x – stężenie molowe domieszki GeO₂ w rdzeniu światłowodu [M%];

dla tzw. III okna transmisyjnego (1,55 µm):

(9)
$$n_3(x) = 221,7870 \cdot 10^{-6} \cdot x^2 - 4,8494 \cdot 10^{-3} \cdot x + 1,4440$$

gdzie: *x* – stężenie molowe domieszki GeO₂ w rdzeniu światłowodu [M%].

Zależność współczynnika załamania depresyjnego pierścienia domieszkowanego fluorem od stężenia molowego domieszki F-SiO₂, dla dwóch długości fali świetlnej (II i III okna optycznego) prezentuje Rys. 3.

Rys. 3. Wartość współczynnika załamania w depresyjnym pierścieniu wokół rdzenia światłowodu G.657, w zależności od koncentracji domieszki F-SiO₂ dla tzw. II okna optycznego (1,31 μ m) i III okna optycznego (1,55 μ m)

Następnie dysponując wartościami katalogowymi współczynnika załamania w depresyjnym pierścieniu wokół rdzenia światłowodu G.657 w III oknie optycznym, zamieszczonymi w Tablicy 1, stosując "regułę falsi" [12] wyznaczono pierwiastki wielomianu (9), które określają stężenie molowe domieszki F-SiO₂ w depresyjnym pierścieniu odpowiedniego rodzaju światłowodu G.657. Uzyskane wyniki zostały zamieszczone w Tabeli 3.

Tabela 3. Stężenie molowe domieszki GeO₂ w depresyjnym pierścieniu wokół rdzenia jednomodowego światłowodu telekomunikacyjnego G.657 dla II i III okna optycznego

<u> </u>	1 9
Typ światłowodu G.657	Stężenie molowe domieszki F-SiO ₂ w depresyjnym pierścieniu [M%]
G.657B (GeO ₂ -SiO ₂ oraz F-SiO ₂ i SiO ₂)	0,005
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i F-SiO ₂)	0,863
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i nanopierścień)	1,803

Podstawiając uzyskane wartości stężenia molowego domieszki F-SiO₂ (Tablica 3) do wielomianu (8) uzyskano wartości współczynnika załamania w depresyjnym pierścieniu światłowodu G.657 dla II okna optycznego. Obliczone wartości zawarte są w Tabeli 4.

Tabela 4. Współczynnik załamania w depresyjnym pierścieniu światłowodu G.657 dla II okna optycznego

Typ światłowodu G.657	Współczynnik załamania w depresyjnym pierścieniu światłowodu G.657 – n ₃
G.657B (GeO2-SiO2 oraz F-SiO2 i SiO2)	1,447
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i F-SiO ₂)	1,443
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i nanopierścień)	1,439

Ostatnim etapem była interpolacja wielomianem drugiego stopnia Lagrange'a [12] współczynników a_i oraz b_i równania Sellmeiera (1) na podstawie danych zawartych w Tablicy 2. Mają one następującą postać:

(10)
$$a_1(x) = -6,4469 \cdot 10^{-3} \cdot x^2 + +3,5305 \cdot 10^{-3} \cdot x + 696,1663 \cdot 10$$

(11)
$$a_2(x) = 7,2763 \cdot 10^{-3} \cdot x^2 - 18,0180,10^{-3}, x + 407,0426,10^{-3}$$

(12)
$$a_3(x) = 24,6347 \cdot 10^{-3} \cdot x^2 -$$

$$-62,0541 \cdot 10^{-3} \cdot x + 897,4994 \cdot 10^{-3}$$

(13)
$$b_1(x) = -2,3628 \cdot 10^{-3} \cdot x^2 +$$

$$+1,1985\cdot10^{-3}\cdot x+68,4043\cdot10^{-3}$$

(14)
$$b_2(x) = 1,1307 \cdot 10^{-3} \cdot x^2 + 10^{-3} \cdot x^2$$

$$-232,1000 \cdot 10^{-6} \cdot x + 116,2414 \cdot 10^{-3}$$

$$b_3(x) = 100,1305 \cdot 10^{-3} \cdot x^2 - 100,105 \cdot 10^{-3} \cdot x^2 - 100,105 \cdot 10^{-3} \cdot x^2 - 100,105 \cdot 10^{-3} \cdot$$

(15)
$$-2201915 \cdot 10^{-3} \cdot x + 9\,8962$$

gdzie: x – stężenie molowe domieszki F-SiO₂ w depresyjnym pierścieniu wokół rdzenia światłowodu G.657 [M%].

Rys. 4. Wartość współczynnika a_i w równaniu Sellmeiera, w zależności od koncentracji domieszki F-SiO₂, w depresyjnym pierścieniu wokół rdzenia światłowodu

Rys. 5. Wartość współczynnika \boldsymbol{b}_i w równaniu Sellmeiera, w zależności od koncentracji domieszki F-SiO₂, w depresyjnym pierścieniu wokół rdzenia światłowodu

Następnie dokonano podstawienia zapisanych w Tablicy 3 wartości stężeń molowych domieszki F-SiO₂ do wielomianów opisujących współczynniki a_i i b_i , aby wyznaczyć ich wartość. Uzyskane wyniki zapisano w Tabeli 5.

Tabela 5. Współczynniki a_i i b_i w równaniu Sellmeiera w zależności od typu światłowodu G.657

Typ światłowodu G.657	Współczynniki w równaniu Sellmeiera a_i , b_i [µm]		
$\begin{array}{c} \text{G.657B}\\ (\text{GeO}_2-\text{SiO}_2 \text{ oraz } \text{F}-\text{SiO}_2\\ \text{i SiO}_2) \end{array}$	$a_{1} = 0,69618$ $a_{2} = 0,40785$ $a_{3} = 0,89719$ $b_{1} = 0,06841$ $b_{2} = 0,11624$ $b_{3} = 9,89510$		
$\begin{array}{c} G.657B\\ (GeO_2-SiO_2\ oraz\ SiO_2\\ i\ F-SiO_2) \end{array}$	$a_1 = 0,69441$ $a_2 = 0,39781$ $a_3 = 0,86228$ $b_1 = 0,06768$ $b_2 = 0,11688$ $b_3 = 9,78067$		
G.657B (GeO ₂ – SiO ₂ oraz SiO ₂ i nanopierścień)	$a_1 = 0,68157$ $a_2 = 0,39911$ $a_3 = 0,86571$ $b_1 = 0,06288$ $b_2 = 0,11950$ $b_3 = 9,82470$		

Tabela 6. Współczynniki załamania w depresyjnym pierścieniu światłowodu G.657 dla III okna optycznego – wartości uzyskane na podstawie interpolowanych współczynników równania Sellmeiera oraz wartości katalogowe

Typ światłowodu	Współczynnik załamania w depresyjnym pierścieniu światłowodu G.657 – <i>n</i> ₃	
0.007	wartości obliczone	wartości katalogowe
G.657B (GeO ₂ -SiO ₂ oraz F-SiO ₂ i SiO ₂)	1,444	1,444
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i F-SiO ₂)	1,440	1,440
G.657B (GeO ₂ -SiO ₂ oraz SiO ₂ i nanopierścień)	1,436	1,436

Wnioski

Na podstawie prac [3,7] można stwierdzić. że jednomodowe światłowody telekomunikacyjne G.657 można stosować do budowy cewek pomiarowych polarymetrycznych czujników natężenia prądu. Charakteryzują się one zbliżonymi (nie gorszymi), do klasycznych włókien telekomunikacyjnych G.652, G.653 i G.655 właściwościami metrologicznymi podczas pomiaru natężenia prądu czujnikiem polarymetrycznym. Niewątpliwą ich zaletą w porównaniu ze światłowodami G.652, G.653 i G.655 jest możliwość ich nawijania bezpośrednio na przewód fazowy z minimalnym promieniem gięcia R = 5mm. W światłowodach G.652, G.653 i G.655 promień ten wynosi R = 55 mm.

Odporność na zginanie światłowody G.657 zawdzięczają specjalnej konstrukcji płaszcza, w obrębie którego znajduje się depresyjny pierścień bądź nanopierścień. Ową depresyjność uzyskuje się poprzez domieszkowanie fluorem czystej krzemionki, co daje strukturę F-SiO₂. Dostępne na rynku światłowody mają z góry ustalone stężenie domieszki fluoru.

Zaprezentowana w pracy [7] metoda projektowania rdzenia oraz w niniejszym artykule, metoda projektowania płaszcza, pozwalają potraktować w sposób całościowy zagadnienie projektowania światłowodów odpornych na zginanie dla celów metrologicznych. Metoda projektowania rdzenia pozwala uzyskać żądaną czułość światłowodu, natomiast metoda projektowania płaszcza zapewnia żądaną odporność na zginanie – dopuszczalny promień gięcia światłowodu, przy którym nie zaobserwujemy strat makrozgięciowych.

Warto również zaznaczyć, że zastosowana interpolacja Lagrange'a wielomianem drugiego stopnia daje bardzo dokładne wyniki. Zostało to potwierdzone w drodze Dokonano podstawienia symulacji. interpolowanych wartości współczynników a_i oraz b_i (Tablica 5) do równania Sellmeiera (1), przy długości fali 1,55 µm, w celu określenia wartości współczynnika załamania w depresyjnym pierścieniu światłowodów n₃, aby je porównać z wartościami katalogowymi światłowodów G.657 zawartymi w Tablicy 1. Uzyskane wyniki zostały przedstawione w Tabeli 6 - wartości obliczone pokrywają się z wartościami katalogowymi.

LITERATURA

- [1] Torbus S. A., Ratuszek M., The selection method of the single mode telecommunication fiber to the interferometric current sensor depending on the destination areas, *Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2010*, Wilga (24 – 30 May 2010), Proc. of SPIE, 0277-786X, Vol. 7745, 7745-81
- [2] Torbus S. A., Using G.652 telecommunication single-mode optical fibre for a measurement coil of the interferometric current sensor, Zeszyty naukowe nr 257 – Elektrotechnika 15, Uniwersytet Technologiczno – Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy (2010)
- [3] Torbus S. A., Zastosowanie światłowodów telekomunikacyjnych G.652, G.653 i G.655 w polarymetrycznych czujnikach natężenia prądu, PAK, nr 5 (2011)
- [4] ITU-T Rec. G.652, Characteristics of a single mode optical fibre and cable, (2003)
- [5] ITU-T Rec. G.653, Characteristics of a dispersion shifted single – mode optical fibre and cable, (2003)
- [6] ITU-T Rec. G.655, Characteristics of a non zero dispersion shifted single – mode optical fibre and cable, (2003)
- [7] Torbus S. A., Ratuszek M., Zastosowanie jednomodowych światłowodów telekomunikacyjnych odpornych na zginanie G.657 do realizacji cewki pomiarowej polarymetrycznego czujnika natężenia prądu, Przegląd Elektrotechniczny, nr 4a (2012)
- [8] ITU-T Rec. G.657, Characteristics of a bending loss insensitive single mode optical fibre and the cable for the access network, (2006)
- [9] ITU-T Rec. G.657, Characteristics of a bending loss insensitive single mode optical fibre and the cable for the access network, (2009)
- [10] Borzycki K., Światłowodowe sieci dostępowe, Telekomunikacja i techniki informacyjne, vol. 1-2, ss.1-29 (2008)
- [11] Majewski A., Teoria i projektowanie światłowodów, *WNT*, Warszawa (1991)
- [12] Fortuna Z., Macukow B., Wąsowski J., Metody numeryczne, WNT, Warszawa (2001)

Sławomir Andrzej Torbus, Uniwersytet Autorzv: dr inż. Przyrodniczy, Wydział Telekomunikacji, Technologiczno – Informatyki i Elektrotechniki, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, E-mail: slator@utp.edu.pl; mgr inż. Maciej Fajfer, Uniwersytet Technologiczno Przyrodniczy, Wvdział Telekomunikacji, Informatyki i Elektrotechniki, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, E-mail: maciej.fajfer@utp.edu.pl; Ratuszek, Jadwiga mar inż. Małgorzata Uniwersvtet Technologiczno – Przyrodniczy, Wydział Telekomunikacji, Informatyki i Elektrotechniki, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, E-mail: mratuszek@utp.edu.pl;